(2)根据(1)中的运算即可发现规律,并用多项式乘多项式证明即可;Р (3)利用(2)所得规律进行整体代入即可.(公众号:齐齐课堂)Р 【解析】(1)(x+1)(x2﹣x+1)Р =x3﹣x2+x+x2﹣x+1Р =x3+1,Р (m+2)(m2﹣2m+4)Р =m3﹣2m2+4m+2m2﹣4m+8Р =m3+8,Р (2a+1)(4a2﹣2a+1)Р =8a3﹣4a2+2a+4a2﹣2a+1Р =8a3+1.Р 故答案为 x3+1、m3+8、8a3+1.Р (2)规律:(a+b)(a2﹣ab+b2)=a3+b3.Р 证明:(a+b)(a2﹣ab+b2)Р =a3﹣a2b+ab2+a2b﹣ab2+b3Р =a3+b3.Р (3)∵x+y=2,xy=﹣3,Р ∴x2+y2=(x+y)2﹣2xy=10,Р ∴x3+y3Р =(x+y)(x2﹣xy+y2)Р =26.Р 11